Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers.

نویسندگان

  • Poul M Bendix
  • S Nader S Reihani
  • Lene B Oddershede
چکیده

Absorption of electromagnetic irradiation results in significant heating of metallic nanoparticles, an effect which can be advantageously used in biomedical contexts. Also, metallic nanoparticles are presently finding widespread use as handles, contacts, or markers in nanometer scale systems, and for these purposes it is essential that the temperature increase associated with electromagnetic irradiation is not harmful to the environment. Regardless of whether the heating of metallic nanoparticles is desired or not, it is crucial for nanobio assays to know the exact temperature increase associated with electromagnetic irradiation of metallic nanoparticles. We performed direct measurements of the temperature surrounding single gold nanoparticles optically trapped on a lipid bilayer, a biologically relevant matrix. The lipid bilayer had incorporated fluorescent molecules which have a preference for either fluid or gel phases. The heating associated with electromagnetic radiation was measured by visualizing the melted footprint around the irradiated particle. The effect was measured for individual gold nanoparticles of a variety of sizes and for a variety of laser powers. The temperatures were highly dependent on particle size and laser power, with surface temperature increments ranging from a few to hundreds of degrees Celsius. Our results show that by a careful choice of gold nanoparticle size and strength of irradiating electromagnetic field, one can control the exact particle temperature. The method is easily applicable to any type of nanoparticle for which the photothermal effect is sought to be quantified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurements of extreme orientation-dependent temperature increase around an irradiated gold nanorod

When irradiated at its resonance frequency, a metallic nanoparticle efficiently converts the absorbed energy into heat which is locally dissipated. This effect can be used in photothermal treatments, e.g., of cancer cells. However, to fully exploit the functionality of metallic nanoparticles as nanoscopic heat transducers, it is essential to know how the photothermal efficiency depends on param...

متن کامل

Photothermal heating of optically trapped gold nanoparticles quantified using controlled vesicle cargo release

Optically trapped metallic nanoparticles hold great promise as heat transducers in photothermal applications such as drug delivery assays or photothermal therapy. We use the heat dissipated from an optically trapped gold nanosphere to perform a controlled release of a fluorescently labeled vesicle lumen. In the assay, the ambient temperature is kept below the phase transition temperature of the...

متن کامل

Direct proof of spontaneous translocation of lipid-covered hydrophobic nanoparticles through a phospholipid bilayer

Hydrophobic nanoparticles introduced into living systems may lead to increased toxicity, can activate immune cells, or can be used as nanocarriers for drug or gene delivery. It is generally accepted that small hydrophobic nanoparticles are blocked by lipid bilayers and accumulate in the bilayer core, whereas big nanoparticles can only penetrate cells through slow energy-dependent processes, suc...

متن کامل

Heat Profiling of Optically Trapped Gold Nanoparticles using Vesicle Release

The purpose of this speciale-thesis is to accurate measure the heating from optically trapped gold nanoparticles with diameters 60, 80, 100, 150, and 200 nm. Optical tweezers operating at a wavelength of 1064 nm are used to both control the particles position and confer irradiation, which is absorbed by the gold particles. The temperature profile is then measured by letting DC15PC phospholipid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 4 4  شماره 

صفحات  -

تاریخ انتشار 2010